Chockie Group International, Inc.

INSERVICE ENGINEERING

Comparative Review of Risk-Informed Inservice Inspection Methodologies

Alan Chockie – Chockie Group International, Inc. Robin Graybeal – Inservice Engineering Scott Kulat – Inservice Engineering

Presented at: ASME 2010 Pressure Vessel & Piping Conference Bellevue Washington

July 21, 2010

Presentation Topics

- Historical perspective
 - Development of ISI Rules
 - Development of RI-ISI Programs
- The Risk-Informed ISI Methodologies
 - WOG Methodology
 - EPRI Methodology
 - Code Case N-716
- Comparative Review of the Methodologies

Initial ISI Guidance

- Early 60's ISI guidelines based on fossil plant experience
- Little consistency in original ISI programs
- Late 60's AEC ISI study recommended
 - Inspection of important systems and components
 - 10 years to complete all inspections
 - Random-failure philosophy
 - Preservice exams
 - No guidance on what to do when indications were found

Operational Experience

- Operational experience showed service-induced failures were not due to
 - random causes
 - at random times
 - at random locations
- Failures were from high stresses, fatigue, incorrect materials, and operational errors
- Many could have been predicted with proper analysis or material selection criteria

4

Revised ASME Code

- > 1973 Section XI Code was revised to
 - Target high stress areas
 - Address high cumulative usage factors (fatigue)
 - Incorporate requirements for
 - UT criteria
 - flaw acceptance standards
 - fracture mechanics analysis
 - repair and replacement
 - □ Class 2 & 3 systems

The Current ISI Requirements

- > 1978 Current ISI requirements established
 - 100% of B-F Class 1 welds
 - 25% of B-J Class 1 welds
 - 7 ¹/₂% of Class 2 welds
- Augmented Inspection Programs developed over time to address specific degradation issues
 - Intergranular Stress Corrosion Cracking (IGSCC)
 - Flow Accelerated Corrosion (FAC)
 - Microbiologically Induced Corrosion (MIC)

Lack of Effectiveness of ISI Programs

- SASME Code ISI exams found only 0.6% of welds contained flaws
- Almost all flaws were detected by IGSCC Augmented Inspection Program
- Inspections often focused on the wrong SSCs
- > The appropriate locations were not being inspected
- > The correct type of exams were not being performed

RI-ISI Development

- Mid-1980's NRC program to develop RI-ISI methodology to take advantage of
 - PRA data
 - Industry and plant experiences
 - Information on specific damage mechanisms
- RI-ISI objective
 - focus inspections where failure mechanisms are likely to be present and enhanced inspections are warranted

Risk

Risk = *probability of event* × *its effects*

Probability of event – function of potential degradation modes as determined by physical characteristics & operational parameters

Effects – measured by CDF and LERF*

- Core Damage Frequency (CDF) damage to pressure vessel
- Large Early Release Frequency (LERF)

* Obtained from <u>required Plant Plant Examinations using PRA methodology</u>

9

RI-ISI Methodologies

- Early 1990's 3 Key ASME RI-ISI Code Cases
 - N-560 Alternative exam requirements Class 1 B-J Piping Welds
 - N-577 WOG RI-ISI Methodology
 - N-578 EPRI RI-ISI Methodology

Basic Risk-Informed ISI Principles

- 1. Scope Determination
- 2. Segment Definition
- 3. Consequence Determination
- 4. Failure Probability Assessment
- 5. Risk Ranking
- 6. Element Selection
- 7. Change in Risk Evaluation

WOG Methodology Overview

EPRI Methodology Overview

N-716 – Latest RI-ISI Methodology

- > ASME Code Case N-716 developed to
 - Take advantage of lessons learned
 - Reduce RI-ISI program development effort
 - Potentially eliminate many low value added exams

Advantages and Disadvantages

EPRI Methodology

- Advantages
 - Required expertise normally available in plant staff
 - Reduction in NDE examinations
 - Simplified yet fully risk-informed process
 - Less expensive than WOG approach
 - No increase in pressure testing
- Disadvantages
 - Results are categorized rather than individually quantified
 - May require more resources than N-716 approach

Advantages and Disadvantages

WOG Methodology

- Advantages
 - Provides quantified result
 - May require fewer NDE examinations
- Disadvantages
 - Does not allow exemptions
 - Requires determination of stresses for each segment
 - Requires PFM & statistical expertise expertise not normally available in plant staff
 - May require pressure testing of Class 2 every outage
 - Typically most expensive initial cost

Advantages and Disadvantages

Code Case N-716

- Advantages
 - Does not require consequence analysis for Class 1
 - Does not require update to failure rate analysis
 - Least labor intensive to implement
- Disadvantages
 - Incorporates less plant-specific information
 - Relies upon input from RI-ISI performed at other plants
 - Requires consideration of Class 3 and Non-class piping
 - Typically results in more NDE exams than EPRI or WOG

U	Units implementing each methodology							
	52 units							
	15 units							
	2 units							

Г

RI-ISI Cost & Radiation Reduction

- Average cost savings
 - ~ \$870K per unit per interval for a Class 1 & 2 application
- Estimated reduction in radiation exposure
 - ~ 75% to 90% for a Class 1 & 2 application
 - ~ 60% to 75% decrease in welds selected for exam
 - Surface exams essentially eliminated
- Cost and radiation exposure reduction figures similar for both BWRs and PWRs

Conclusions

- Widely accepted by both NRC and industry safety improvement and cost reductions
- RI-ISI success has led to use of risk-informed processes for other components and systems
- Growing support to continue development and refinement of RI processes to improve plant performance and safety

Advantages and Disadvantages of each methodology

			Previous	Revised	Chan
RI-ISI Methodology/ Code Case Utilized	Plant, Unit	RI-ISI Scope	Insp Elements	Insp Elements	Insp Elements
EPRI (N-716) ¹	ANO, U1	Class 1, 2, 3 & Non-Classed	40	42	2
EPRI (N-716) ²	ANO, U2	Class 1, 2, 3 & Non-Classed	167	81	-86
EPRI (N-716)	Calvert Cliffs, U1	Class 1, 2, 3 & Non-Classed	105	79	-26
EPRI (N-716)	Calvert Cliffs, U2	Class 1, 2, 3 & Non-Classed	105	72	-33
EPRI (N-716) ³	Nine Mile Pt, U1	Class 1, 2, 3 & Non-Classed	53	69	16
EPRI (N-716) ⁴	North Anna, U1	Class 1, 2, 3 & Non-Classed	56	178	122
EPRI (N-716) ⁴	North Anna, U2	Class 1, 2, 3 & Non-Classed	56	183	127
EPRI (N-716) ⁵	Vogtle, U1	Class 1, 2, 3 & Non-Classed	108	136	28
EPRI (N-716) ⁵	Vogtle, U2	Class 1, 2, 3 & Non-Classed	106	141	35
¹ Converted from N-560, s ² Converted from N-578, s ³ Converted from N-578	ubmitted, awaiting a ubmitted, awaiting a	pproval (1 unit). Com pproval (1 unit). Orig	nparison on Exa inal application	mination Catego was through full	ory B-J welds only scope pilot applic

⁴Converted from N-577, submitted, awaiting approval (2 units)

⁵Converted from N-577, submitted, approved (2 units)

23